一类随机SIQR传染病模型的持久性分析Persistence Analysis of a Stochastic SIQR Epidemic Model
刘娟;
摘要(Abstract):
利用随机微分方程理论研究了一类随机SIQR传染病模型的持久性。在持久性含义的基础上,利用It?公式得出了I(t)、Q(t)、R(t)持续存在的范围,说明了疾病流行的条件。结果表明,当白噪声较小时,系统具有一定的持久性。
关键词(KeyWords): SIQR模型;随机扰动;持久性;It?公式
基金项目(Foundation): 国家自然科学基金资助项目(12001001)
作者(Author): 刘娟;
Email:
DOI: 10.13486/j.cnki.1673-2618.2020.04.007
参考文献(References):
- [1] ALEXANDER M E,MOGHADAS S M.Bifurcation analysis of SIRS epidemic model with generalized incidence[J].SIAM Journal on Applied Mathematics,2005,65(5):1794-1816.
- [2] WEN L S,YANG X F.Global stability of a delayed SIRS model with temporary immunity[J].Chaos,Solitons and Fractals,2008,38(2):221-226.
- [3] ACEDO L,GONZALEZ-PARRA G,ARENAS A.An exact global solution for the classical SIRS epidemic model[J].Nonlinear Analysis:Real World Applications,2010,11(3):1819-1825.
- [4] ZHANG T L,LIU J L,TENG Z D.Stability of Hopf bifurcation of a delayed SIRS epidemic model with stage structure[J].Nonlinear Analysis:Real World Applications,2010,11(1):293-306.
- [5] HOU J,TENG Z D.Continuous and impulsive vaccination of SEIR epidemic models with saturation incidence rates[J].Mathematics and Computers in Simulation,2009,79(10):3038-3054.
- [6]刘娟.一类时滞SIQR传染病模型的稳定性[J].吉林大学学报(理学版),2017,55(6):1477-1480.
- [7]刘娟.一类时滞SIQS传染病模型的Hopf分支[J].北华大学学报(自然科学版),2016,17(5):561-565.
- [8]宋燕,庞天舒.具有常数输入及非线性发生率的SIQR传染病模型[J].生物数学学报,2013,28(3):454-460.
- [9]杨秀香,程纪远,薛春荣.一类具有隔离干预的非线性传染率的传染病模型的全局稳定性分析[J].生物数学学报,2012,27(4):577-588.
- [10] ZHANG T L,TENG Z D.Permanence and extinction for a nonautonomous SIRS epidemic model with time delay[J].Applied Mathematical Modelling,2009,33(2):1058-1071.